Abstract
To produce maltobionic acid (MBA) from maltose in Escherichia coli, we recombinantly expressed a glucose dehydrogenase gene (gdh1) from Enterobacter cloacae and a pyrroloquinoline quinone (PQQ) synthesis gene cluster (pqqFABCDEMIH) from Pseudomonas taetrolens. Although the recombinant E. coli strain (E. coli [pKK-ECGDH1 + pACYC-PQQ]) successfully produced MBA from maltose, the yield of MBA was rather low, indicating that E. coli has other maltose utilization pathways. Amylomaltase (MalQ) is the first enzyme in the maltose utilization pathway in E. coli. To investigate the potential role of MalQ on MBA production, E. coli malQ was inactivated. The culturing of the recombinant E. coli strain (E. coli ∆malQ [pKK-ECGDH1 + pACYC-PQQ]) in a flask resulted in higher MBA production titer, yield, and productivity (209.3g/L, 100%, and 1.1g/L/h, respectively) than those of E. coli [pKK-ECGDH1 + pACYC-PQQ] (162.1g/L, 77.4%, and 0.5g/L/h, respectively), indicating that the MalQ inactivation was highly effective in improving the MBA production ability of E. coli. After fermentation using 5-L bioreactor, MBA production titer, yield, and productivity of the recombinant E. coli strain were 209.3g/L, 100%, and 1.5g/L/h, respectively, which were 1.3-, 1.3-, 2.3-fold higher than those of E. coli [pKK-ECGDH1 + pACYC-PQQ] (167.3g/L, 79.9%, and 0.65g/L/h), respectively. Thus, our results provide an important foundation for efficient MBA production using recombinant E. coli strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.