Abstract

Lignocellulose-utilizing biorefinery is a promising strategy for the sustainable production of value-added products such as bio-based polymers. Simultaneous consumption of glucose and xylose in Escherichia coli was achieved by overexpression of the gene encoding Mlc, a multiple regulator of glucose and xylose uptake. This catabolite derepression gave the enhancement in the production of poly (15mol% lactate-co-3-hydroxybutyrate), up to 65% from 50% (wild-type strain) in the cellular contents, of the Mlc-overexpressing strain of E.coli on a mixture of glucose and xylose as carbon sources. Microscopic analysis indicated that the Mlc-overexpressing strain showed the enlargement of cell volume in the presence and absence of polymer production, consequently making an expanded volumetric space available for enhanced polymer accumulation. The enhanced polymer production by the catabolite derepression was also reproducible using the biomass, Miscanthus×giganteus (hybrid Miscanthus), which was cultivated in the farm of Hokkaido University.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.