Abstract

MND-2119 is a novel once-daily dose self-emulsifying formulation of highly purified eicosapentaenoic acid ethyl ester (EPA-E) and is approved as an antihyperlipidemia agent in Japan. It has improved absorption and achieves higher plasma EPA concentrations at Cmax than conventional EPA-E. In the JELIS trial, concomitant use of EPA-E with statin therapy significantly reduced atherosclerotic cardiovascular disease (ASCVD) risks. As a potential mechanism of action of EPA, endogenous formation of EPA-derived anti-inflammatory metabolites is receiving greater attention. This study aims to investigate the endogenous formation of EPA-derived anti-inflammatory metabolites following single and multiple administrations of MND-2119. Healthy adult male subjects were randomly assigned to a nonintervention (control) group, MND-2119 2-g/day group, MND-2119 4-g/day group, or EPA-E 1.8-g/day group for 7 days (N=8 per group). Plasma fatty acids and EPA-derived metabolites were evaluated. Peripheral blood neutrophils were isolated, and the production of EPA-derived metabolites from in vitro stimulated neutrophils was evaluated. After single and multiple administrations of MND-2119 2 g/day, there were significant increases in plasma EPA concentration, 18-hydroxyeicosapentaenoic acid (18-HEPE), and 17,18-epoxyeicosatetraenoic acid compared with those of EPA-E 1.8 g/day. They were further increased with MND-2119 4 g/day administration. In neutrophils, the EPA concentration in the MND-2119 2-g/day group was significantly higher compared with that in the EPA-E 1.8-g/day group after multiple administration, and 18-HEPE production was positively correlated with EPA concentration. No safety issues were noted. These results demonstrate that MND-2119 increases the plasma and cellular concentrations of EPA and EPA-derived metabolites to a greater extent than conventional EPA-E formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.