Abstract

Basidiomycetous yeasts in the genus Pseudozyma are known to produce extracellular glycolipids called mannosylerythritol lipids (MELs). Pseudozyma tsukubaensis produces a large amount of MEL-B using olive oil as the sole carbon source (>70g/L production). The MEL-B produced by P. tsukubaensis is a diastereomer type of MEL-B, which consists of 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol as a sugar moiety, in contrast to the conventional type of MELs produced by P. antarctica, which contain 4-O-β-D mannopyranosyl-(2S,3R)-erythritol. In this study, we attempted to increase the production of the diastereomer type of MEL-B in P. tsukubaensis 1E5 by introducing the genes encoding two lipases, PaLIPAp (PaLIPA) and PaLIPBp (PaLIPB) from P. antarctica T-34. Strain 1E5 expressing PaLIPA exhibited higher lipase activity than the strain possessing an empty vector, which was used as a negative control. Strains of 1E5 expressing PaLIPA or PaLIPB showed 1.9- and 1.6-fold higher MEL-B production than the negative control strain, respectively, and oil consumption was also accelerated by the introduction of these lipase genes. MEL-B production was estimated using time course analysis in the recombinant strains. Strain 1E5 expressing PaLIPA produced 37.0±1.2g/L of MEL-B within 4days of cultivation, whereas the strain expressing an empty vector produced 22.1±7.5g/L in this time. Overexpression of PaLIPA increased MEL-B production by P. tsukubaensis strain 1E5 from olive oil as carbon source by more than 1.7-fold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call