Abstract
Nanomechanical resonators made of suspended graphene exhibit high sensitivity to pressure changes. Nevertheless, the graphene resonator pressure performance is affected owing to the gas permeation problem between the graphene film and the substrate. Therefore, we prepared edge-deposited graphene resonators by focused ion beam (FIB) deposition of SiO2, and their gas leakage velocities and pressure-sensing ability were demonstrated. In this paper, we characterize the pressure-sensing response and gas leakage velocities of graphene membranes using an all-optical actuation system. The gas leakage velocities of graphene resonators with diameters of 10, 20, and 40 μm are reduced by 5.0 × 106, 2.0 × 107, and 8.1 × 107 atoms/s, respectively, which demonstrates that the edge deposition structure can reduce the gas leakage of the resonator. Furthermore, the pressure-sensing performance of three graphene resonators with different diameters was evaluated, and their average pressure sensitivities were calculated to be 3.4, 2.4, and 1.9 kHz/kPa, with the largest full-range hysteresis errors of 0.6, 0.7, and 1.0%, respectively. The temperature stabilities of the three sizes of resonators in the temperature range of 300-400 K are 0.016, 0.015, and 0.016%/K, and the maximum resonance frequency drift over 1 h is 0.0058, 0.0048, and 0.0112%, respectively. This work has great significance for the improvement of gas leakage velocity characterization of graphene membrane and graphene resonant pressure sensor performance optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.