Abstract

Bisphenol A (BPA), 4-nonylphenol (4-NP), and triclosan (TCS) are phenolic endocrine disrupting chemicals (EDCs), which are widely detected in aquatic environments and further bioaccumulated and metabolized in fish. Physiologically based toxicokinetic (PBTK) models have been used to describe the absorption, distribution, metabolism, and excretion (ADME) of parent compounds in fish, whereas the metabolites are less explored. In this study, a PBTK incorporating metabolism (PBTK-MT) model for BPA, 4-NP, and TCS was established to enhance the performance of the traditional PBTK model. The PBTK-MT model comprised 16 compartments, showing great accuracy in predicting the internal concentrations of three compounds and their glucuronidated and sulfated conjugates in fish. The impact of typical hepatic metabolism on the PBTK-MT model was successfully resolved by optimizing the mechanism for deriving the partition coefficients between the blood and liver. The PBTK-MT model exhibited a potential data gap-filling capacity for unknown parameters through a backward extrapolation approach of parameters. Model sensitivity analysis suggested that only five parameters were sensitive in at least two PBTK-MT models, while most parameters were insensitive. The PBTK-MT model will contribute to a well understanding of the environmental behavior and risks of pollutants in aquatic biota.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call