Abstract
In this paper, the learning performance of different machine learning algorithms is investigated by applying fuzzy-rough feature selection (FRFS) technique on optimally balanced training and testing sets, consisting of the piezophilic and nonpiezophilic proteins. By experimenting using FRFS technique followed by Synthetic Minority Over-sampling Technique (SMOTE) at optimal balancing ratios, we obtain the best results by achieving sensitivity of 79.60%, specificity of 74.50%, average accuracy of 77.10%, AUC of 0.841, and MCC of 0.542 with random forest algorithm. The ranking of input features according to their differentiating ability of piezophilic and nonpiezophilic proteins is presented by using fuzzy-rough attribute evaluator. From the results, it is observed that the performance of classification algorithms can be improved by selecting the reduced optimally balanced training and testing sets. This can be obtained by selecting the relevant and non-redundant features from training sets using FRFS approach followed by suitably modifying the class distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.