Abstract
Climate change will result in increased precipitation variability with more extreme events reflected in more frequent droughts as well as more frequent extremely wet conditions. The increase in precipitation variability will occur at different temporal scales from intra to inter-annual and even longer scales. At the intra-annual scale, extreme precipitation events will be interspersed with prolonged periods in between events. At the inter-annual scale, dry years or multi-year droughts will be combined with wet years or multi-year wet conditions. Consequences of this aspect of climate change for the functioning ecosystems and their ability to provide ecosystem services have been underexplored. We used a process-based ecosystem model to simulate water losses and soil-water availability at 35 grassland locations in the central US under 4 levels of precipitation variability (control, +25, +50+75 %) and six temporal scales ranging from intra- to multi-annual variability. We show that the scale of temporal variability had a larger effect on soil-water availability than the magnitude of variability, and that inter- and multi-annual variability had much larger effects than intra- annual variability. Further, the effect of precipitation variability was modulated by mean annual precipitation. Arid-semiarid locations receiving less than about 380 mm yr �1 mean annual precipitation showed increases in water availability as a result of enhanced precipitation variability while more mesic locations (>380 mm yr �1 ) showed a decrease in soil water
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.