Abstract

Improvement of power production in a microbial fuel cell (MFC) with a high cell density culture strategy was developed. By using high cell density culture, the voltage output and power density output of the MFC were enhanced about 0.6 and 1.6 times compared to the control, respectively. Further analysis showed that riboflavin concentration in the MFC was dramatically increased from 0.1 mg/L to 1.2 mg/L by high cell density culture. Moreover, the biofilm formation on the anode surface was significantly enhanced by this new strategy. The increased accumulation of electron shuttle (riboflavin) as well as enhanced biofilm formation contributed to the improvement in anodic electrochemical activity and these factors were the underlying mechanism for MFC performance improvement by high cell density culture. This work demonstrated that high cell density culture would be a simple and practical strategy for MFC manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.