Abstract

The integration of a hydrogen fuel cell with an electro-fermentation system represents a novel approach for improving polyhydroxybutyrate (PHB) accumulation in Ralstonia eutropha H16, using a sustainable energy source. In this study, electro-fermentation noticeably affected cell growth, biomass production, substrate consumption, and PHB accumulation. Final residual biomass concentrations and maximum specific growth rates were enhanced by supplying a 10-mA electric current. Furthermore, a remarkable enhancement in PHB content (30% higher than control) was achieved by redox-mediated electro-fermentation with a 10 mA electric current, upon the addition of a redox mediator. Two-stage cultivation limited the growth suppression caused by redox-mediated electro-fermentation, and also increased the maximum PHB productivity of the system. The additional electrons supplied upon supplementation of the redox mediator accelerated the glycolytic pathway and redox cycling of NADH/NAD+, led to a spontaneous boost for adenosine triphosphate (ATP) generation, and further facilitated the biosynthesis of PHB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call