Abstract

The study on the enhanced mechanisms of the enzymes involved in plant absorption, plant degradation, and microbial mineralization in the remediation of soils contaminated with polychlorinated biphenyls (PCBs) is of great significance for the application of plant-microbe combined remediation technique in PCB-contaminated soils. The present study first used a combination of molecular docking and molecular dynamics methods to calculate the effects of the plant absorption enzyme, plant degradation enzyme, and microbial mineralization enzyme on the PCBs in the soil environment. A multifunctional plant degradation enzyme was constructed with three functional roles of absorption, degradation, and mineralization using amino acid sequence recombination and site-directed mutagenesis to modify the template of plant degradation enzyme. Finally, using the Taguchi experimental design-assisted molecular dynamics simulation method, the suitable external environmental conditions of plant-microbe combined remediation of the PCB-contaminated soil were determined. In total, six multifunctional plant degradation enzymes were designed, which exhibited a significantly improved efficiency of PCB degradation. In comparison to the complex of plant absorption enzyme, plant degradation enzyme, and microorganism mineralization enzyme (6QIM-3GZX-1B85), the six multifunctional plant degradation enzymes exhibited significantly higher efficiency (2.10-2.38 times) in degrading the PCBs, with a maximum of 2.69 times under suitable external environmental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.