Abstract

The pion-to-proton ratio is identified as a potential signal for a non-equilibrium first-order chiral phase transition in heavy-ion collisions, as the pion multiplicity is directly related to entropy production. To showcase this effect, a non-equilibrium Bjorken expansion starting from realistic initial conditions along a Taub adiabat is used to simulate the entropy production. Different dynamical criteria to determine the final entropy-per-baryon number are investigated and matched to a hadron resonance gas model along the chemical freeze out curve to obtain the final pion and proton numbers. We detect a strong enhancement of their multiplicity ratio at the energies where the system experiences a strong phase transition as compared to a smooth crossover which shows almost no enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.