Abstract

In this work, we study the influence of inertia on the dynamics of neutrally buoyant spherical microbeads of varying diameter in a pinch flow fractionation device. To that aim, we monitor their trajectory over an unprecedented wide range of flow rates and flow rate ratios. Our experimental results are supplemented by a depth-averaged 2D-model where the flow is described using the Navier-Stokes equation coupled with the shallow channel approximation and where particles trajectories are computed from Newton’s second law of motion with a particle tracing model. Above a certain flow rate, we show that particles inertia enables them to cross streamlines in response to an abrupt change of direction. These streamline crossing events combined with the increasing effect of the inertial lift forces drive particles to deviate from the inertialess trajectory. The amplitude of the resulting inertial deviation increases both with the particles diameter and the total flow rate before reaching a plateau. Consequently, based on our numerical and experimental results, we determine the optimal flow conditions to shift the particles distribution in order to significantly enhance their size-based separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.