Abstract

Piezoelectric polymers hold great potential for various electromechanical applications, but only show low performance, with |d33 | < 30 pC/N. We prepare a highly piezoelectric polymer (d33 = −62 pC/N) based on a biaxially oriented poly(vinylidene fluoride) (BOPVDF, crystallinity = 0.52). After unidirectional poling, macroscopically aligned samples with pure β crystals are achieved, which show a high spontaneous polarization (Ps) of 140 mC/m2. Given the theoretical limit of Ps,β = 188 mC/m2 for the neat β crystal, the high Ps cannot be explained by the crystalline-amorphous two-phase model (i.e., Ps,β = 270 mC/m2). Instead, we deduce that a significant amount (at least 0.25) of an oriented amorphous fraction (OAF) must be present between these two phases. Experimental data suggest that the mobile OAF resulted in the negative and high d33 for the poled BOPVDF. The plausibility of this conclusion is supported by molecular dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call