Abstract

We use first-principles calculations to investigate the lattice properties of group-IV monochalcogenides. These include static dielectric permittivity, elastic and piezoelectric tensors. For the monolayer, it is found that the static permittivity, besides acquiring a dependence on the interlayer distance, is comparatively higher than in the 3D system. In contrast, it is found that elastic properties are little changed by the lower dimensionality. Poisson ratios relating in-plane deformations are close to zero, and the existence of a negative Poisson ratio is also predicted for the GeS compound. Finally, the monolayer shows piezoelectricity, with piezoelectric constants higher than those recently predicted to occur in other 2D systems, such as hexagonal BN and transition-metal dichalcogenide monolayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.