Abstract
In ferroelectric materials, phase boundaries such as the morphotropic phase boundary (MPB) and polymorphic phase boundary (PPB) have been widely utilized to enhance the piezoelectric properties. However, for a single-ferroelectric-phase system, there are few effective paradigms to achieve the enhancement of piezoelectric properties. Herein, we report an unexpected finding that largely enhanced piezoelectric properties occur in a single-tetragonal-ferroelectric-phase region in the Sm-modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT-xSm) system. An electrostrain maximum (0.13%) appears in the single-phase region of the BZCT-0.5Sm composition with the maximum polarization (Pm = 18.37 µC/cm2) and piezoelectric coefficient (d33 = 396 pC/N) and the minimum coercive field (EC = 3.30 kV/cm) at room temperature. Such an enhanced piezoelectric effect is due to the synergistic effect of large lattice distortion and domain miniaturization on the basis of the transmission electron microscope (TEM) observation and X-ray diffraction (XRD) Rietveld refinement. Our work may provide new insights into the design of high-performance ferroelectrics in the single-phase region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.