Abstract
The piezoelectric, electrocaloric and energy storage properties were systemically investigated in lead-free Bi0.5(Na1-xKx)0.5TiO3 ceramics from room temperature to high temperature region. These ceramics can be poled completely to obtain large piezoelectric coefficient (104–153 pC/N) at low electric field of ~30 kV/cm. The piezoelectric property shows good thermal stability due to high depolarization temperature (Td). For BNKT20, a large low electric field-induced strain of 0.36% is obtained at 120 °C under 50 kV/cm, the corresponding normalized strain coefficient is up to 720 pm/V, which is larger than other BNT-based ceramics at high temperature region. The electrocaloric properties of these ceramics are studied via indirect and direct methods. Large EC value (~1.08 K) in BNKT20 ceramic is obtained at 50 kV/cm using indirect calculation. Above 100 °C, the dielectric energy storage density and efficiency of BNKT20 is still up to ~0.85 J/cm3 and 0.75, respectively. The BNKTx ceramics may become promising candidates in the fields of actuators, electrocaloric cooling and energy storage at high temperature region.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.