Abstract
Modern irrigation practices and industrial pollution can contribute to the simultaneous occurrence of salinity and heavy metal contamination in large areas of the world, resulting in significant negative effects on crop productivity and sustainability. This study aimed to investigate the growth-promoting potentials of an important endophytic fungal strain SL3 and to compare its potential with exogenous IAA (indole-3-acetic acid) in the context of salt and heavy metal stress. The strain was assessed for plant growth-promoting traits such as the production of indole-3-acetic acid, gibberellins (GA), and siderophore. We selected two important crops, mung bean and maize, and examined various physiological and biochemical characteristics under 300 mM NaCl and 2.5 mM Pb stress conditions, with and without the application of IAA and SL3. This study's results demonstrated that both IAA and SL3 positively impacted the growth and development of plants under normal and stressed conditions. In NaCl and Pb-induced stress conditions, the growth of mung bean and maize plants was significantly reduced. However, the application of IAA and SL3 helped to alleviate stress, leading to a significant increase in shoot/root length and weight compared to IAA and SL3 non-treated plants. The results revealed that photosynthetic pigments, accumulation of catalase (CAT), phenolic contents, polyphenol oxidase, and flavanols are higher in the IAA and SL3-treated plants than in the non-inoculated plants. This study's findings revealed that applying the SL3 fungal strain positively influenced various physiological and biochemical processes in tested plant species under normal and stress conditions of NaCl and Pb. These findings also suggested that SL3 could be a potential replacement for widely used IAA to promote plant growth by improving photosynthetic efficiency, reducing oxidative stress, and enhancing metabolic activities in plants, including mung and maize. Moreover, this study highlights that SL3 has synergistic effects with IAA in enhancing resilience to salt and heavy stress and offers a promising avenue for future agricultural applications in salt and heavy metal-affected regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.