Abstract

The electronic structure, optical absorption and charge transfer performances of Zn-porphyrin (ZnPP) dye molecule adsorbed on anatase (101) and rutile (110) TiO2 surfaces have been investigated systematically using spin-polarized density functional theory calculations. The calculated results indicate that the strong interactions of ZnPP dye molecule and TiO2 surfaces cause an obvious variation of the conduction band minimum and valence band maximum for ZnPP dye molecule adsorbed on TiO2 surfaces, and the valence band of adsorption systems has a large bandwidth compared with that of the TiO2 bulk and surfaces, which induces a red-shift of the optical absorption edge and improves greatly the optical absorption of adsorption systems in the ultraviolet and visible light regions. Moreover, the change of charge density indicates that the photoelectrons transfer from the ZnPP dye molecule to TiO2 across the interface, and a built-in electric field is formed at the interface, which effectively enhances the separation of photogenerated electron-hole pairs. These results suggest that the sensitized actions of ZnPP dye molecule on TiO2 surfaces can generate an excellent photovoltaic performance of TiO2 photoanode in DSSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call