Abstract

The photovoltaic effect of BiVO4 semiconductor was investigated by incorporating an ultrathin BiFeO3 ferroelectric layer. It is found that the ultrathin ferroelectric layer with strong self-polarization and high carrier density is desirable to enhance the photovoltaic effect and to manipulate the photovoltaic polarity of the semiconductors. The photovoltage increases by 5-fold to 1 V, and the photocurrent density increases by 2-fold to 140 μA/cm(2), in which the photovoltage is the highest compared with the reported values in polycrystalline and epitaxial ferroelectric thin film solar cells. The mechanism for the observed effect is discussed on the basis of a polarization-induced Schottky-like barrier at the BiFeO3/fluorine doped tin oxide interface. Our work provides good guidance for fabrication of cost-effective semiconductor photovoltaic devices with high performance, and this kind of ultrathin ferroelectric film may also have promising applications in copper indium gallium selenide solar cell, dye-sensitized TiO2 solar cell, lighting emitting diode, and other photoelectron related devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call