Abstract

Improving the stability of lead iodide (PbI2), especially photostability, is in crucial demand for the realization of application‐level optoelectronic devices. In this regard, deposition of organic polymers on PbI2 as a protective layer is a common strategy to improve its stability, but polymers with low thermal conductivity generally cannot produce the desired effect. Herein, a novel strategy is proposed for improving the photostability of PbI2 at different excitation wavelengths, including 320, 405, and 532 nm, via constructing type‐I heterostructure with ZnO with high thermal conductivity. In addition, due to the type‐I band alignment between PbI2 and ZnO, the photogenerated carriers in ZnO can be transferred to PbI2, resulting in a nearly eightfold photoluminescence enhancement of PbI2 under 320 nm laser excitation. The ZnO as a protective layer forming type‐I heterostructure is evidenced as a feasible strategy for enhancing the photostability and photoluminescence of PbI2, facilitating the development of practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.