Abstract
AbstractOwing to their excellent carrier mobility, high absorption coefficient, exceptional quantum efficiency, and low‐cost solution processability, perovskite quantum dots (PQDs) are a promising candidate for photodetection. However, PQDs‐based photodetectors typically show poor optoelectronic performances, mainly limited by their weak light–matter interaction. In this work, MAPbBr3 PQDs are hybridized with graphene (Gr) and morphologically controlled plasmonic gold nanocrystals (AuNCs) to demonstrate a superior photodetector at 432 nm through a synergetic effect. The experimental results indicate that three shaped AuNCs (i.e., sphere, the octahedron (OD), and rhombic dodecahedron (RD)) all contribute to better photodetection behaviors due to surface trap state passivation and enhanced charge carrier densities with longer lifetime compared to that of pristine PQDs. In particular, the PQDs/RD‐AuNCs/Gr system demonstrates a record‐high responsivity of 2.7 × 105 A W−1, a detectivity of 4.9 × 1013 Jones, and external quantum efficiency (EQE) of 7.9 × 107% at 1.6 µW cm−2 illumination power density of 432 nm wavelength with a lowest applied voltage of 1.0 V for a gate‐free PQDs/AuNCs/Gr‐based photodetector. Furthermore, to the authors’ knowledge, this device shows the highest responsivity among the PQDs/AuNCs/Gr‐based electrostatic gate‐free lateral configuration photodetectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.