Abstract

Perovskite nanocrystals (NCs) are promising emissive materials for application in light-emitting diodes (LEDs) due to their high quantum efficiency and narrow full width at half maximum (FWHM). However, the ion bonding character of perovskite leads to their quick chemical decomposition under atmospheric moisture. Herein, we present CsPbBr3 perovskite NCs that achieved improved efficiency and stability with the addition of water during the synthesis process. The CsPbBr3 NCs synthesized with a controlled amount of water exhibited a quantum yield greater than 90%, sustained stability over 35 days and a much narrower FWHM than CsPbBr3 NCs that did not use water. Finally, water-added perovskite NC LEDs were fabricated and they showed a nearly 5-times improvement in current efficiency compared to the reference device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.