Abstract

We analyze theoretically optical generation of a spin-polarized charge current (photogalvanic effect) and spin polarization in graphene with Rashba spin-orbit coupling. An external magnetic field is applied in the graphene plane, which plays a crucial role in the mechanism of current generation. We predict a highly efficient resonant-like photogalvanic effect in a narrow frequency range which is determined by the magnetic field. A relatively less efficient photogalvanic effect appears in a broader frequency range, determined by the electron concentration and spin-orbit coupling strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.