Abstract

n-BiVO4 is a promising semiconductor material for photoelectrochemical water oxidation. Although most thin-film syntheses yield discontinuous BiVO4 layers, back reduction of photo-oxidized products on the conductive substrate has never been considered as a possible energy loss mechanism in the material. We report that a 15 s electrodeposition of amorphous TiO2 (a-TiO2) on W:BiVO4/F:SnO2 blocks this undesired back reduction and dramatically improves the photoelectrochemical performance of the electrode. Water oxidation photocurrent increases by up to 5.5 times, and its onset potential shifts negatively by ∼500 mV. In addition to blocking solution-mediated recombination at the substrate, the a-TiO2 film-which is found to lack any photocatalytic activity in itself-is hypothesized to react with surface defects and deactivate them toward surface recombination. The proposed treatment is simple and effective, and it may easily be extended to a wide variety of thin-film photoelectrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.