Abstract

In this paper, we report the photoelectrochemical performances of CdS nanoparticles (NPs) decorated TiO2 photoanodes. The TiO2 nanofiber arrays (NFAs) were fabricated into Titanium substrate by a hydrothermal method. Afterwards, the deposited TiO2 NFAs were decorated with CdS NPs by employing a successive ionic layer adsorption and reaction (SILAR) method. The obtained samples of CdS covered and uncovered TiO2 NFAs were characterized by X-ray diffraction, Scanning Electron Microscopy and UV-visible Diffuse Reflectance Spectroscopy. The size of the CdS nanoparticles increases with the number of SILAR cycles and leads to an additional broad absorption peak in the visible part of the spectrum. Consequently, the photo-electrochemical performance of the CdS decorated TiO2 was enhanced substantially resulting in a better electron-hole separation and transport. This enhancement has been discussed and assigned to a better sun light harvesting and an efficient charge transfer between the CdS nanoparticles and the TiO2 NFAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call