Abstract

In order to enhance the photoelectrochemical (PEC) performance of tungsten oxide (WO3), it is critical to overcome the problems of narrow visible light absorption range and low carrier separation efficiency. In this work, we firstly prepared the 2D plate-like WO3/CuWO4 uniform core-shell heterojunction through in-situ synthesis method. After modification with the amorphous Co-Pi co-catalyst, the ternary uniform core-shell structure photoanode achieved a photocurrent of 1.4 mA/cm2 at 1.23 V vs. RHE, which was about 6.67 and 1.75 times higher than that of pristine WO3 and 2D uniform core-shell heterojunction, respectively. Furthermore, the onset potential of 2D WO3/CuWO4/Co-Pi core-shell heterojunction occurred a negatively shifts of about 20 mV. Experiments illuminated that the enhanced PEC performance of WO3/CuWO4/Co-Pi photoanode was attributed to the broader light absorption, reduced carrier transfer barrier and increased carrier separation efficiency. The work provides a strategy of maximizing the advantages of core-shell heterojunction and co-catalyst to achieve effective PEC performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.