Abstract

In this work, an efficient photoelectrochemical (PEC) biosensing platform has been designed and developed based on graphene (G) through modifying it into an electroconductive polymer nanosponge (EPNS) and with the incorporation of titanium dioxide nanowires (TiO2 NW) (designated as TiO2 (G) NW@EPNS). Functioning as an efficient immobilization matrix for immobilization of the enzyme Cytochrome C (Cyt C), TiO2 (G) NW@EPNS delivers features for an efficient PEC biosensor, such as fast kinetics of direct electron transfer (DET) to the electrode and effective separation of photogenerated holes and electrons. TiO2 (G) NW@EPNS exhibited DET to the electrode with a highly heterogeneous electron transfer rate constant of 6.29±0.002s−1. The existence of TiO2, G and EPNS in conjunction facilitates DET between the electrode surface and the protein. The fabricated PEC nitrite ion (NO2−) biosensor showed superior analytical performances such as wide linear range (0.5–9000µM), lowest detection limit (0.225mM) and excellent specificity for NO2− in the presence other interferences at a very low bias potential (−0.11V). This study opens up the feasibility of fabricating a PEC biosensor for any analyte using a matrix comprising of G and a photoactive material and EPNS, because these components synergistically contribute to effective immobilization of on enzyme, DET to the electrode and simple read-out under the light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.