Abstract

Ag-decorated TiO2 nanowire arrays were facilely prepared by H2O2 corrosion of Ti and subsequent photodeposition of Ag. Array structures and photoelectric properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis absorption spectroscopy and electrochemical methods. These results show that Ag quantum dots are evenly distributed on the surface of TiO2 nanowires. With an Ag content of 0.4at%, the electrode's photocurrent density and photoconversion efficiency obtained optimum values of 0.29mA/cm2 and 8.55%, respectively. The enhanced photoelectrochemical properties with Ag modification can be attributed to the extended visible light absorption range and improved separation of photo-generated carriers. Additionally, the modified nanowire arrays exhibited much stronger photoelectrocatalytic reduction activity toward hydrogen peroxide in comparison with pure TiO2 arrays or previously reported Ag electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.