Abstract
Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.Graphical abstractWO3-surface modified TiO2 film showing better photocatalytic and photoelectrocatalytic activity.
Highlights
Semiconductor-mediated photocatalytic process (advanced oxidation process (AOT)) has emerged as one of the most promising chemical oxidation processes, anticipated to play a crucial role in water treatment as standalone processes or in combination with conventional technologies [1,2,3,4]
In the study presented here, we demonstrated the preparation of pure and WO3-surface modified TiO2 thin films using plasma-assisted sputtering method and studied their photoelectrochemical and photocatalytic properties
A representative energy-dispersive X-ray spectroscopy (EDS) spectrum of film has been delineated in Figure 1C which indicated the presence of W, Ti, and O, along with Sn and In which are coming from indium tin oxide (ITO) coatings
Summary
Semiconductor-mediated photocatalytic process (advanced oxidation process (AOT)) has emerged as one of the most promising chemical oxidation processes, anticipated to play a crucial role in water treatment as standalone processes or in combination with conventional technologies [1,2,3,4]. It has been well established that metal oxidemediated photocatalysis is an attractive and promising technology to be applied in environmental clean up, clean energy production (H2 production from water splitting), self-cleaning surface, CO2 reduction under solar light or illuminated light source, and green synthetic organic chemistry (some selective photocatalytic oxidation reactions) [5,6,7,8,9,10,11,12].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.