Abstract

CsPbBr3/SiO2 heterostructures were synthesized by the hydrolysis reaction of a mixture of CsPbBr3 nanocrystals (NCs) and (3-aminopropyl)triethoxysilane (APTS) in air. Compared with CsPbBr3 NCs, the CsPbBr3/SiO2 heterostructures exhibit stronger photoluminescence (PL) intensity, longer lifetime of PL (∼40.5 ns), and higher PL-quantum yield (PLQY, ∼86%). The carrier dynamics of CsPbBr3/SiO2 was detected by the transient absorption (TA) spectrum. The experimental results show that SiO2 passivates the surface traps of CsPbBr3 NCs and enhances the PL intensity. However, photoelectrochemical impedance spectra (PEIS) demonstrate that the impedance of CsPbBr3/SiO2 is higher than that of CsPbBr3 NCs, which reduces carrier transport and extraction. Because the application of CsPbBr3/SiO2 in optoelectronics is limited, CsPbBr3/SiO2/TiO2 heterostructures were synthesized by the further reaction of tetrabutyl titanate (TBT). The TiO2 coating can reduce the impedance of the CsPbBr3/SiO2. Importantly, ∼68% of the PL intensity of CsPbBr3/SiO2 is retained. Compared with CsPbBr3/SiO2 and CsPbBr3 NCs, the CsPbBr3/SiO2/TiO2 demonstrates faster carrier transport (κct = 2.4 × 109 s-1) and higher photocurrent density (J = 76 nA cm-2). In addition, CsPbBr3/SiO2/TiO2 shows good stability under (ultraviolet) UV irradiation, along with water stability and thermal stability. Therefore, the double protection approach can enhance the stability of CsPbBr3 NCs and tune the optoelectronic properties of CsPbBr3 NCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call