Abstract
Photodynamic therapy (PDT) has been shown to effectively treat cancer by producing cytotoxic reactive oxygen species via excitation of photosensitizer (PS). However, most PS lack tumor cell specificity, possess poor aqueous solubility, and cause systemic photosensitivity. Removing heme from hemoglobin (Hb) yields an apoprotein called apohemoglobin (apoHb) with a vacant heme-binding pocket that can efficiently bind to hydrophobic molecules such as PS. In this study, the PS aluminum phthalocyanine (Al-PC) was bound to the apoHb-haptoglobin (apoHb-Hp) protein complex, forming an apoHb-Al-PC-Hp (APH) complex. The reaction of Al-PC with apoHb prevented Al-PC aggregation in aqueous solution, retaining the characteristic spectral properties of Al-PC. The stability of apoHb-Al-PC was enhanced via binding with Hp to form the APH complex, which allowed for repeated Al-PC additions to maximize Al-PC encapsulation. The final APH product had 65% of the active heme-binding sites of apoHb bound to Al-PC and a hydrodynamic diameter of 18 nm that could potentially reduce extravasation of the molecule through the blood vessel wall and prevent kidney accumulation of Al-PC. Furthermore, more than 80% of APH's absorbance spectra were retained when incubated for over a day in plasma at 37 °C. Heme displacement assays confirmed that Al-PC was bound within the heme-binding pocket of apoHb and binding specificity was demonstrated by ineffective Al-PC binding to human serum albumin, Hp, or Hb. In vitro studies confirmed enhanced singlet oxygen generation of APH over Al-PC in aqueous solution and demonstrated effective PDT on human and murine cancer cells. Taken together, this study provides a method to produce APH for enhanced PDT via improved PS solubility and potential targeted therapy via uptake by CD163+ macrophages and monocytes in the tumor (i.e., tumor-associated macrophages). Moreover, this scalable method for site-specific encapsulation of Al-PC into apoHb and apoHb-Hp may be used for other hydrophobic therapeutic agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.