Abstract
The vertical van der Waals heterostructures based on 2-D materials have attracted tremendous attention in optoelectronic devices as they can offer perfect interface without dangling bonds, atomic layer thicknesses, and conveniently tunable energy band alignment. However, the carrier transport mechanism in vertically stacked van der Waals heterostructure photodetectors is usually neglected in regards of photoresponse enhancement strategy, leading to low photoresponsivity and quantum efficiency. Here, we report a vertically stacked tunneling photodetector based on WSe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /graphene/WS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> van der Waals heterostructure. By introducing graphene film into the WSe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /WS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> interface, the interface composition was ameliorated and the Fowler–Nordheim tunneling (FNT) was enhanced with the reduced tunneling barrier height and thickness, caused by the elevated energy level of electrons since strong electron–electron interaction, ultrafast thermalization (~50 fs), and massless Dirac electrons of graphene. Therefore, the device exhibits a high photocurrent/dark current ratio (>10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> ), fast response time ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sim 300~ \mu \text{s}$ </tex-math></inline-formula> ), high detectivity ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sim 1.58\times 10^{12}$ </tex-math></inline-formula> Jones), and high responsivity (429 mA W <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−1</sup> ) across a broad spectral range till <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1~ \mu \text{m}$ </tex-math></inline-formula> at room temperature. The optimized detectivity and responsivity are about 150 times and 50 times higher than WSe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /WS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> device without graphene, respectively. These results contribute to offer a novel and versatile strategy for overcoming the performance limitation in van der Waals photodetector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.