Abstract

Tylosin (TYL) is a ubiquitous macrolide antibiotic which has been frequently detected in natural aqueous environment. Montmorillonite (MMT), a major component of natural suspended particles, plays essential roles in the transportation and transformation processes of various organic contaminants. This study systematically investigated the photodegradation behavior and mechanism of TYL in MMT suspensions under simulated sunlight irradiation. In the existence of 0.1 g L−1 Na-MMT, >80.8 % TYL was degraded after 8 h irradiation, which was significantly higher than that in the absence of MMT (42.5 %). Further mechanistic studies suggested that the synergistic effects including the formation of surface complex and the generation of surface hydroxyl radicals play essential roles in the accelerated TYL phototransformation. Meanwhile, other factors like exchangeable cations of MMTs, pH and ionic strength could also strongly influence the TYL photodegradation. The probable degradation pathways of TYL in MMT suspension was further proposed based on the detected intermediates and DFT calculations. Photobacterium phospherium T3 bioluminescent assay revealed that the photodegradation products of TYL have a lower acute toxicity than bulk TYL, especially in the presence of MMT. This study provides new insights for the photodegradation pathways of organic contaminants in aqueous environments, which is of great importance for assessing the fate and risk of emerging pollutants in natural surface water bodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call