Abstract
Synthesized graphitic carbon nitride-based (CN) heterojunction photocatalysts are considered as a promising material for photodegradation of organic compounds and CO2 conversion. In this work, ZnO-loaded g-C3N4 (ZnO/CN) heterojunction photocatalyst was investigated for the enhanced photooxidation of tetracycline (TC) and CO2 conversion . After modification, the photocatalysts showed an improvement in the light absorption range and the photogenerated separation rate of electron/hole due to the heterojunction structure of ZnO/CN. The degradation rate of TC was found to be 92.6% within 60 min, while CO production rate was 7.68 μmol/g/h. The rate constants of TC by using ZnO/CN were 0.0812, 0.0539, 0.0336, 0.0249, and 0.0185 min−1, corresponding to the TC level of 1, 10, 30, 50, and 100 mg/L, respectively. The photodegradation rate of TC by ZnO/CN was 5 times higher than that of CN, demonstrating the advantage of heterojunction photocatalyst.The modified ZnO/CN exhibited superior degradation performance of TC and higher CO2 conversion rate than those of unmodified CN. It also exhibited high stability with 82% removal efficiency of TC at the 6th run and the CO2 conversion rate of 71% after reused 5 times.The heterojunction ZnO/CN can be utilized as an efficient material for various photocatalytic applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.