Abstract

Extracellular antibiotic resistance genes (eARGs) contribute to antibiotic resistance, and as such, they pose a serious threat to human health. eARGs, regarded as an emerging contaminant, have been widely detected in various bodies of water. Degradation greatly weakens their distribution potential and environmental risks. Dissolved organic matter (DOM), mainly consisted of humic substances, carbohydrates, and organic acids, is ubiquitous in diverse waters and significantly affects the degradation of coexisting contaminants. However, the photodegradation of eARGs in natural water, especially regarding the roles of DOM in this process, remains unknown. Herein, we investigated the eARGs photodegradation in waters with and without DOM. Illumination has been found to effectively photodegrade eARGs, and this process was significantly enhanced by DOM. Further experiments revealed that photosensitization of DOM produced hydroxyl radicals (•OH) to enhance plasmid strand breaks and produced singlet oxygen (1O2) to accelerate the guanine oxidation, which in turn promoted the photodegradation of plasmid-carried eARGs. Transformation assays indicated that eARGs transformation efficiencies were reduced after their photodegradation. The presence of DOM accelerated the decreases of eARGs transformation efficiencies under illumination. DOM concentration and some ions (e.g., NO3-, NO2-, HCO3-, Br-, and Fe3+) affected •OH or 1O2 levels, further influencing the photodegradation of eARGs. Overall, eARGs photodegradation in aquatic environments is a crucial process both in the reduction of eARGs concentrations and in transformation efficiencies. This work facilitated us to better understand the fate of eARGs in waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.