Abstract

Antibiotic residues in effluents discharged from wastewater treatment plants (WWTPs) have been considered high-risk organics due to biorefractory property and potential toxicity. Secondary pollution and unsustainability existed in advanced treatment of secondary effluent are currently in urgent need of improvement. In this study, a sustainably green strategy based on Rhodopseudomonas palustris (R.palustris) by regulating the structure of extracellular polymeric substances (EPS) was proposed for the first time to achieve efficiently removal of sulfadiazine (SDZ). Results showed that 0.2 V was the optimal external potential for R.palustris to efficiently remove SDZ, where the biodegradation rate constant obtained at this potential was 4.87-folds higher than that in open-circuit mode and a complete removal was achieved within 58 h in the presence of EPS extracted at this potential. Three-dimensional excitation-emission matrix (3D-EEM) spectra analysis suggested that tryptophan protein-like, tyrosine protein-like, humic acid-like and fulvic acid-like substances present in EPS were the main effective components which was responsible for the indirect photodegradation of SDZ. The quenching experiments showed that 3EPS* was the dominant reactive species which accounted for 90% of SDZ removal. This study provides new implications for the advanced treatment of secondary effluent organic matters by developing eco-friendly bioaugmentation technology and biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.