Abstract

Photocatalysis has recently been regarded as one of the most viable technologies for water treatment. Scholars all over the world are focusing on nanocomposites for water treatment for efficient and effective sanitization of bodies of water. Because of their high surface area, high chemical reactivity, excellent mechanical strength, low cost, and nanoscale composite materials have enormous potential to purify water in a various way. In this study, n-type TiO2 was synthesized and tailored to produce a TiO2/BiOI n–p nanocatalyst for enhanced photodegradation of 2,4-dinitrophenol (2,4-DNP) under UV-A and solar light respectively. Because of the formation of a heterojunction between BiOI and TiO2, the photocatalytic activity in TiO2/BiOI absorbs strongly in both the UV and visible regions and it has a lower recombination rate of the e-/h+ pairs. Furthermore, the generation of OH•, O2•– radicals during the oxidation process is attributed to the photodegradation of 2,4-DNP. The results revealed that the TiO2/BiOI manifest outperformed BiOI and TiO2 in terms of photocatalytic function. XRD, BET, HR-SEM-EDX with ECM, HR-TEM, FT-IR, PL, and UV-DRS techniques determined the photocatalyst composition. The HR-SEM images clearly showed that the particles are less than 27 ​nm in size. Thus, nanocomposite materials have played an important role in water purification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call