Abstract
ABSTRACTIt is believed that the effectual scattering by earth-abundant Al nanoparticles in combination with photoelectric conversion-efficient GaAs material may help for cost-effective solar cells. Al nanoparticles of various radii embedded at different depths in a Ta2O5-coated GaAs semiconductor have been studied by finite-difference time-domain method for their influence towards spectral absorption rate and photocurrent in GaAs solar cells. The calculated spectral absorption rate and photocurrent show a significant enhancement at the optimal depth for a particular radius of Al nanoparticles, which is explained on the basis of surface plasmon resonance. Al nanoparticles of radius 80 nm embedded just below the antireflection layer of Ta2O5 result a maximum spectral absorption rate of 0.95 that leads to a photocurrent of 30.43 mA/cm2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.