Abstract

Full-printable and hole transport material (HTM)-free perovskite solar cells (PSCs) with carbon counter electrodes feature high stability and low cost. However, the perovskite film prepared by conventional one-step solution-coating method always shows a relatively poor coverage on the substrate, leading to the limit of the photocurrent density. In this study, we incorporated carbon quantum dots (CQDs) in the perovskite films, and investigated their effects on the performance of TiO2 nanosheet-based and HTM-free PSCs. It was found that the addition of CQDs to the perovskite film can enhance the photocurrent density of PSCs, and the optimal PSC with 0.1% CQDs evolved 60% higher photocurrent density than the pristine one. The improved photocurrent density was attributed to the heterogeneous nuclei derived from CQDs during perovskite crystallization, which would increase amount of perovskite nuclei and form a fine perovskite grain, leading to a better coverage on the substrate. Moreover, due to the excellent conductivity, CQDs in perovskite films could efficiently transport the photo-excited electrons, accelerating the separation and mobilization of charge carriers. This study presents the incorporation of CQDs in perovskite as an efficient approach to promote the performance of HTM-free PSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call