Abstract

A Bi12TiO20/RGO photocatalyst with polyhedron microstructure was fabricated via the template-free hydrothermal method, and the visible-light-induced photocatalytic activity of the prepared Bi12TiO20 was also evaluated by the photocatalytic reduction of heavy metal pollutants. The structures and optical properties of the prepared Bi12TiO20/RGO were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–vis diffuse reflectance spectrum (UV–vis DRS). The effects of the reaction time and mineralizer concentration on the formation of the Bi12TiO20 polyhedral microstructure were analyzed. The enhanced photocatalytic performances of Bi12TiO20/RGO were observed which were ascribed to the combination of the Bi12TiO20 microstructure induced photogenerated charges and the RGO nanostructure as a photogenerated charges carrier. The effect of organic acids, p-hydroxybenzoic acid (PHBA), chloroacetic acid, and citric acid on the Cr(VI) photocatalytic reduction was also discussed. This work provides an insight into the design of the bismuth-based microstructure photocatalyst towards the application for environment purification of heavy metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.