Abstract
Titanium dioxide was modified with Pt-polypyrrole nanocomposites through the in situ simultaneous reduction of Pt(iv) and the oxidative polymerization of pyrrole monomers at ambient temperature. The modified powders were characterized using X-ray photoelectron spectroscopy (XPS), dark-field scanning transmission electron microscopy (DF-STEM), infrared spectroscopy (IR) and by the determination of the BET surface area by nitrogen adsorption. Photocatalytic hydrogen production tests were performed employing 75 ml aqueous solution containing 2250 mumol methanol as the sacrificial electron donor. The obtained results show that 0.5 and 1.0 wt% Pt and polypyrrole, respectively, are the optimum ratios for high photocatalytic H(2) production rates. The amount of H(2) evolved during 5 h of UV-vis illumination of the suspension of Pt-polypyrrole modified TiO(2) powder is three times higher than that obtained with Pt-loaded TiO(2) prepared by a photochemical deposition method. The photonic efficiencies of the H(2) production employing 75 ml aqueous solution containing 370 mmol methanol were calculated to be 10.6 +/- 0.5 and 4.5 +/- 0.2% for TiO(2) modified with Pt-polypyrrole nanocomposites and for Pt-loaded TiO(2) prepared by a photochemical deposition method, respectively. A synergistic effect between Pt nanoparticles and polypyrrole leading to a better separation of the charge carriers is proposed to explain the enhanced reactivity of the newly synthesized photocatalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.