Abstract

Graphitic carbon nitride (g-C3N4) is a promising heterogeneous photocatalyst for organics pollutants degradation and water splitting. Herein, we highlight an available pathway to prepare the ultrafine g-C3N4 nanosheets by gaseous stripping of bulk g-C3N4 in wet nitrogen. As comparison, g-C3N4 treated in air and nitrogen atmospheres are also prepared. The obtained products are characterized with X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectra, respectively. Well dispersed g-C3N4 nanosheets can be obtained by this gaseous stripping process in wet nitrogen, which possess much higher specific surface area (211.2m2g−1) than that of bulk g-C3N4 (15.3m2g−1). Both RhB degradation and water splitting are applied to characterize the photocatalytic performances of the ultrafine g-C3N4 nanosheets. The g-C3N4 (w-N2) nanosheets can degrade 20mg/L RhB completely within 12min under visible light illumination, which is 5.32 times faster than that of bulk g-C3N4. Also, the g-C3N4 (w-N2) nanosheets possess the highest photocatalytic hydrogen evolution rate of 1113.48μmolh−1g−1 under visible light illumination, which is 6 times that of bulk g-C3N4. The mechanisms of enhancing the photocatalytic performance are discussed to be the higher oxidation ability of VB and higher specific surface area (211.2m2/g) of the ultrafine g-C3N4 nanosheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call