Abstract

Semiconductor oxides are frequently used as active photocatalysts for the degradation of organic agents in water polluted by domestic industry. In this study, sol-gel ZnO thin films with a grain size in the range of 7.5-15.7 nm were prepared by applying a novel two-step drying procedure involving hot air treatment at 90-95 °C followed by conventional furnace drying at 140 °C. For comparison, layers were made by standard furnace drying. The effect of hot air treatment on the film surface morphology, transparency, and photocatalytic behavior during the degradation of Malachite Green azo dye in water under ultraviolet or visible light illumination is explored. The films treated with hot air demonstrate significantly better photocatalytic activity under ultraviolet irradiation than the furnace-dried films, which is comparable with the activity of unmodified ZnO nanocrystal powders. The achieved percentage of degradation is 78-82% under ultraviolet illumination and 85-90% under visible light illumination. Multiple usages of the hot air-treated films (up to six photocatalytic cycles) are demonstrated, indicating improved photo-corrosion resistance. The observed high photocatalytic activity and good photo-corrosion stability are related to the hot air treatment, which causes a reduction of oxygen vacancies and other defects and the formation of interstitial oxygen and/or zinc vacancies in the films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.