Abstract

In this paper, the molybdenum disulfide (MoS2)/copper oxide (CuO) heterostructure is introduced in a very simple way for photoelectrochemical application. MoS2 multilayers were prepared by sonication method and decorated with copper oxide nanoparticles through its thin film deposition layer and heating in argon atmosphere. SEM, TEM, AFM, absorption and Raman analyses were employed to characterize the nanostructures. The results show that the presence of copper oxide nanoparticles reduces the recombination rate of photogenerated electron-holes in MoS2 multilayers and produces a significant photocurrent compared to the individual MoS2 electrode. Such a proposed structure demonstrates a high potential for photoelectrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.