Abstract

Achieving efficient phosphorus recovery and reuse from wastewater presents formidable challenges. In this study, a synergistic adsorption photocatalysis process was successfully constructed. 0.1Bi-MIL-101-NH2 showed the maximum phosphorus adsorption performance of 112 mg/g. After phosphorus adsorption, photoelectrochemical measurements confirmed that the photoelectric properties of the 0.1Bi-MIL-101-NH2-P sample was improved, and the degradation efficiency of SMX was increased by 20 % within 120 min. Meanwhile, the mineralization rate reached 91 %. The incorporation of Bi significantly enhanced the adsorption energy of the 0.1Bi-MIL-101-NH2 sample. Notably, the presence of phosphorus on the surface of 0.1Bi-MIL-101-NH2-P enhanced the adsorption of water molecules by the material, thereby augmenting the generation of •OH. •O2- and •OH played dominant roles in the photodegradation of SMX. Finally, the degradation pathways of intermediates were further studied by Density functional theory (DFT) calculations and LC-MS analysis. This study provides a new avenue for phosphorus recovery and organic pollutant degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.