Abstract

Visible-light-driven heterostructure Ag/Bi2WO6 nanocomposites were prepared using a hydrothermal method followed by the photodeposition of Ag on Bi2WO6. A photocatalyst with a different molar ratio of Ag to Bi2WO6 (1:1, 1:2 and 2:1) was prepared. The catalytic performance of Ag/Bi2WO6 towards the photocatalytic oxidation of rhodamine B (RhB) and methylene blue (MB) was explored. Interestingly, the Ag/Bi2WO6 (1:2) catalyst exhibited superior performance; it oxidized 83% of RhB to Rh-110 and degraded 68% of MB in 90 min. This might be due to the optimum amount of Ag nanoparticles, which supported the rapid generation and transfer of separated charges from Bi2WO6 to Ag through the Schottky barrier. An excess of Ag on Bi2WO6 (1:1 and 2:1) blocked the active sites of the reaction and did not produce the desired result. The introduction of Ag on Bi2WO6 improved the electrical conductivity of the composite and lowered the recombination rate of charge carriers. Our work provides a cost-effective route for constructing high-performance catalysts for the degradation of toxic dyes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call