Abstract

Poor adsorption of reactants and intermediates as well as low mineralization rate greatly restrict the application of common semiconductor photocatalyst TiO2 for air purification. A plausible solution would be to integrate metal–organic frameworks (MOFs) materials with good gas adsorption property with traditional photocatalytic material TiO2 with exciton generation. A core–shell structured photocatalyst with functional MOFs HKUST-1 (Cu3(BTC)2, BTC = 1,3,5 benzenetricarboxylate) as core and porous ultrathin anatase film as shell was synthesized. The composite photocatalyst was characterized in detail, and isopropanol degradation experiments were performed to evaluate the photocatalytic performances. The experimental results revealed that HKUST-1 can provide a special pathway for photogenerated electrons migration and thus restrain the recombination of electrons and holes to increase the photocatalytic efficiency. Furthermore, the capture of reactants and intermediates was also enhanced due to the unique M...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.