Abstract

(111)-layered Ba5Ta4O15 photocatalysts were synthesised by a solid state reaction route and a citrate synthesis route, and their structural and electronic properties were investigated. After citrate route preparation, the presence of a second phase, namely Ba3Ta5O15, was determined by X-ray powder diffraction and absorption spectroscopy. The existence of this phase had a profound effect on the photocatalytic activity of this Ba5Ta4O15/Ba3Ta5O15 composite in comparison to the pure Ba5Ta4O15 materials. The photocatalytic performance of the barium tantalates was evaluated by investigating the capability in ˙OH radical formation and hydrogen generation. Strongly increased hydrogen evolution rates for the Ba5Ta4O15/Ba3Ta5O15 composite, up to 160% higher than for the pure Ba5Ta4O15, were determined, and only very small amounts of Rh co-catalyst, deposited on the photocatalysts by stepwise reductive photo-deposition, were needed to achieve these results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.