Abstract
Herein, a novel BiOBr photocatalyst with partial surface modification by graphitized C (BiOBr-Cg) was synthesized through a hydrothermal method with hydrothermal carbonation carbon (HTCC) as a slow-releasing carbon source and characterized by experimental and theoretical methods. BiOBr-Cg exhibited excellent visible-light photocatalytic performance toward various refractory pollutants, such as bisphenol A, ibuprofen, ciprofloxacin, 2,4-dichlorophenoxyacetic acid, and diphenhydramine. The characterization results demonstrate that a strong molecular orbital interaction occurs between graphitized C and BiOBr, resulting in the formation of a new surface valence band on graphitized C. This not only promotes the oxidation of pollutants by surface holes but also reduces the recombination of carriers during the bulk phase transfer process, thereby increasing the number of photogenerated carriers. Intriguingly, the analytical results for degradation intermediates and other characterization techniques demonstrate that the pollutants adsorbed on the graphitized C of BiOBr-Cg can be directly excited through light irradiation and react along the organic radical degradation pathway in addition to pollutant degradation by holes and HO2•/O2•-.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.